- colius

......> اس......
اسيدها و بازها
e هر روز در بخشهاى گوناگون زندگى افزون بر شويندهها و پاككنندهها، مقادير متفاوتى از مواد شيميايى گوناگون مصرف مىشود كه در اغلـب آنهـــا اسيدها و بازها نقش مهمى دار دارند.

 ايجاد مىكند، بركشت مقدارى از محتويات اسيدى معده به لولئ مرى است. ؟ ياختههاى ديواره معده با ورود مواد غذايى به آن، هيدروكلريك اسيد (HCl) ترشح مىكنند. اين اسيد افزون بر فعال كردن آنزيمها براى تجزيه مواد غذايى، جانداران ذرهبينى موجود در غذا را انيز از بين میى انبرد. e بازها در سطح پوست همانند صابون، احساس ليزى ايجاد مىىنيند اما به آن نيز آسيب مىرسانند.

اسيدها، كاغذ pH (تورنسل) را به رنگ قرمز و بازها، كاغذ pH (تورنسل) را به رنگ آبى در مى آورند. شكل زير نمونههايى از مواد اسيدى و بازى در زندگى را نشان مىدهـد.

ب) تنظيم ميزان اسيدى بودن شويندهها ضرورى است.

ج) ورود فاضلابهاى صنعتى به محيط زيست سبب تغيير pH مىشود.

ب) اغلب داروها تركيبهايى با خاصيت اسيدى يا بازى هستند.

ث) اغلب ميوهها دارارى اسيدند و
pH

آَ) براى كاهش ميزان اسيدى بودن خاك به آن آهك مى افزايند.

ت) زندىى بسيارى از آبزيان به ميزان pH آب وابسته است.
 مدل آرنيوس
© سوانت آرنيوس نخستين كسى بود كه اسيدها و بازها را بر يك مبناى علمى توصيف كرد.
 ميزان رسانايى آنها با يكديكر يكسان نيست.
 اسيد آرنيوس <…
مادماى است كه با حل شدن در آب، غلظت يون هيدرونيوم را افزايش مىدهد. كاز هيدرورن كلريد، يك اسيد آرنيوس به حساب مى آيد چون در آب سبب افزايش غلظت يون هيدرونيوم مىشود. $\mathrm{HCl}(\mathrm{g}) \xrightarrow{\mathrm{H}_{\mathrm{r}} \mathrm{O}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
هر چه [H+ [
بإ إرنيوس

مادهاى است كه با حل شدن در آب، غلظت يون هيدروكسيد را افزايش مىدهد. سديم هيدروكسيد جامد، يك باز آرنيوس به حساب مى آيد، حون در آب سبب افزايش غلظت يون هيدروكسيد مىشود. 1) $\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{\mathrm{r}} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ r) $\mathrm{NH}_{\varphi} \mathrm{OH}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{\uparrow}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
1- هر جه [-

 اكسيد نافلزها ¢ اكسيد اسيدى
|كسيدهاى اسيدى كْته میثود.

$$
\mathrm{CO}_{\mathrm{r}}(\mathrm{~g})+\mathrm{H}_{\mathrm{r}} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{rH}^{+}(\mathrm{aq})+\mathrm{CO}_{\mathrm{r}}^{\mathrm{r}^{-}-(\mathrm{aqq})}
$$

$$
\mathrm{N}_{\mathrm{r}} \mathrm{O}_{\mathrm{D}}(\mathrm{~g})+\mathrm{H}_{\mathrm{r}} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{rH}^{+}(\mathrm{aq})+\mathrm{rNO}_{\mathrm{r}}^{-}(\mathrm{aq})
$$

> ":->> اكسيدهاى بازى

اكسيد فلزها ٪ اكسيد بازى
$\mathrm{Na}_{\mathrm{r}} \mathrm{O}(\mathrm{s})+\mathrm{H}_{\mathrm{r}} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{rNa}^{+}(\mathrm{aq})+\mathrm{rOH}^{-}(\mathrm{aq})$
$\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{\mathrm{r}} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}^{\mathrm{r}}{ }_{(\mathrm{aq})}+\mathrm{rOH}^{-}(\mathrm{aq})$
اكسيدهاى بازى گقته مىشود. ع خوراكىها، شويندها، داروها، مواد آريشى و بهداشتى شامل مقادير متفاوتى از يون هيدرونيوم هستند. علظت اين يون بر روى ماندكارى اين مواد و, در نتيجه سلامتى تأثير شايانى دارد. ؟ در فرايند توليد مواد كوناكون، اغلب تعيين وكنترل غلظت يون هيدرونيوم نقش مهمى دارد. براى نمونه شير سالم با افزايش غلظت يون هيدرونيوه،

 الكترونها انجام میشوود به همين خاطر به آن آنها رساناى الكترونى مكويندي.

 شكل مقابل مقايسهُ رسانايى الكتريكى محلولهاى آبى سديم كلريد و شكر ر ا نشان مىدهد.
همانطور كه از شكل مشخص است لامث حاوى محلول آبى سديم كلريد روشن است به دليل اينكه الكتروليت بوده و داراى يون است اما لامـب حـاوى محلول شكر خاموش است، حون شكر غيرالكتروليت بوده و يون ندارد. ا- رسانايى الكتريكى محلولهاى الكتروليت يكسان نيست. لذا اتر محلول الكتروليتهاى كوناكون در مدار قرار كيرند، روشنايى متفـاوتى در لامبـ ايجاد مى شود. r- هر جه در شرايط يكسان شمار يونهاى موجود در محلول يا غلظت كاتيونها و آنيونها در محلـول بيشتـر باشــ، الكتروليـت قـوىتر بـوده و

 F- تـ تركيباتى كه به طور كامل بهصورت مولكولى حل مى شوند، غيرالكتروليت هستند مانند شكر و الكلها.

$$
\begin{aligned}
& \text { تنيا اكسيدهاي كروه اول (Lir } \\
& \text { بوده و میتواندا باز توليد كند. } \\
& \text { ع ت توجه داشته باثيد كه با استفاه از اين روش نمتوانو ميزان اسيدى يا بازى بودن يك محلول را به طور دقيق تييين كرد. } \\
& \text {."... }
\end{aligned}
$$

اسيد تك پروتوندار
به اسيدى كه هر مولكول آن در آب تنها مىتواند يك يون هيدرونيوم توليد كند، اسيد تكيروتوندار مكگويند. مانتد HCl و HF.
$\mathrm{HCl}_{(\mathrm{aq})} \xrightarrow{\mathrm{H}_{\mathrm{r}} \mathrm{O}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

 $\mathrm{H}_{\mathrm{r}} \mathrm{S}(\mathrm{aq}) \xrightarrow{\mathrm{H}_{\mathrm{r}} \mathrm{O}} \mathrm{rH}^{+}(\mathrm{aq})+\mathrm{S}^{\mathrm{r}}$
$\mathrm{H}_{\mathrm{r}} \mathrm{PO}_{\mathrm{F}}(\mathrm{aq}) \xrightarrow{\mathrm{H}_{r} \mathrm{O}} \mathrm{rH}^{+}{ }_{(\mathrm{aq})}+\mathrm{PO}_{\uparrow}^{r-}$
به فرايندى كه در آن يك تركيب مولكولى در آب به يونهاى مثبت و منفى تبديل مىشود، يونش كفته مىشود. به طور مثال معادله يونش هيدروكلريك $\mathrm{HCl}(\mathrm{g}) \xrightarrow{\mathrm{H}_{\mathrm{r}} \mathrm{O}} \mathrm{H}^{+}{ }^{(\mathrm{aq})}+\mathrm{Cl}^{-}(\mathrm{aq})$

اسيد در آب بهصورت زير است: شيمىدانها براى بيان ميزان يونش اسيدها، از كميتى به نام درجه يونش استفاده مىكند كه بهصورت زير بيان مىشود:

درجه يونش (a) \qquad
به نسبت شمار مولكولهاى يونيدهشده به شمار كل مولكولهاى حلشده، درجئ يونش كفته مىشود كه آن را با نماد آلفا (α) نشان مىىمند. ششمار كل مولكولمهاى يوليشدهده

توجم: در رابطةٌ درجهٔ يونش مىتوان به جاى شمار مولكولها، غلظت مولى گونهها را قرار داد.
":
اتر درجهٔ يونش در عدد 100 ا طرب شود، درصد يونش بهدست مىآيد.
\% $\%=\alpha \times 1$. 00 توجه: در منابع علمى معتبر، كامى به جاى درجه يونش از درصد يونش استفاده مىشود.

اسيدهاى قوى و فـعيف انـي
اسيدها را بر مبناى ميزان يونشى كه در آب دارند به دو دسته قوى و و وعيف دستهبندى مىكنتند. هر جه مولكولهاى اسيد در آب بيشتر يونش يابند، يونهاى هيدرانينيوم بيشتر توليد مى مشود و قدرت اسيدى محلول بيشتر مىشود. اسيدهاى قوى

$$
\text { اسيدهاى قوى بر اثر حل شدن در آب تقريباً به طور كامل يونش مىيابند و درجهُ يونش آنها يك مىباشد. (1 ٪ } 1 \text {) }
$$

اسيدهاى فعيف
اسيدهايى هستند كه در آب به طور جزئى يونيده مى شوند و شمار يونها در محلول آنها كم است لذا درجهٔ يونش آنها كمتر از يك مىباشد. () به غير از اسيدهاى قوى ذكر شده، بقيه اسيدها مانند
 آ) درجه يونش آن را حساب كنيد؟
 باسغ:آث ب) اسيد ضعيف است چون درجه يونش آن كمتر از يك مىباشد.
a aotious

آٓ معادله يونش استيك اسيد را بنويسيد. ب) درجهُ يونش آن را حساب كنيد. $\mathrm{CH}_{r} \mathrm{COOH} \xrightarrow{\mathrm{H}_{r} \mathrm{O}} \mathrm{CH}_{r} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}(\mathrm{aq})$
باسغ: 1
$\alpha=\frac{r / V \times 10^{-r}}{\circ / Y}=1 / r \Delta \times 10^{-r} \quad$ ب) توجه داشته باشيد كه مقدار مولكولهاى اسيد يونيدهشده برابر با مقدار يون هيدرونيوم توليدشده است

e

 ضعيف افزون بر اندك يونهاى آبيوشيده، مولكولهاي اسيد اسيد نيز يافت مىشوند.

 موجود در محلول اين اسيد، همانند ديكر اسيدهاى ضعيف ثابت استا كريوكسيليك اسيدها از جمله اسيدهاى ضعيف هستند كه تنها هيدرورن گروه كربوكسيل آنها مىتواند بهصورت يون هيدرونيوم وارد محلول شود. $\mathrm{CH}_{\mathrm{r}} \mathrm{COOH}(\mathrm{aq}) \xrightarrow{\mathrm{H}_{\mathrm{r}} \mathrm{O}} \mathrm{CH}_{\mathrm{r}} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}$
اسيدهاى موجود در سركة سيب، انكّور، ريواس و مركبات مانند برتقال و ليمو از جمله اسيدهاى خوراكى و ضعيف هستند.
 ت) (اسيد ـ باز) آرنيوس مادهاى است كه با با حل شدن در آب، غلظت يون (هيدروكسيد ـ هيدرونيوم) را افزايش داده وكاغذ pH (تورنسل) را به رنگ قرمز در مى آورد.
ث) اكسيد (فلزها ـ نافلزها) در آب حلشده و و محيط را (اسيدى ـ بازى) مىكنند، به همين دليل به آنها اكسيد بازى كفته مى بشود. ج) ج) محلول (آمونياك ـ اتانول) الكتروليت ضعيفى است، خون به طور عمده بهصورت (مولكولى - يونى) در آب حل مى شود و تعداد يون در محلول آن (S) (كم - زياد) است.
(S (5)
HF (ح هنگام انحلال در آب به طور عمده بهصورت (مولكولى - يونى) حل مى شود.
خ) به فرايندى كه در آن يك تركيب مولكولى در آب به يونهاى مثبت و منفى تبديل مىشود (درجه يونش - يونش) عفته مىشود.

ذ) اسيدهاى (قوى ـ ضعيف) بر اثر حل شدن در آب به طور (جزئى ــ كامل) يونش مى يابند و درجهُ يونش آن (يك ـ صفر) مى آشا
 ز) در محلول اسيدهاى (قوى ـ ضعيف) افزون بر اندك يونهاى آبيوشيده، مولكولهاى اسيد نيز يافت مىشوند.
¢\&F.
آ) عملكرد بدن ما به ميزان مواد اسيدى و بازى ماري موجود در آن آن وابسته است است
ب) نخستين كسى كه اسيدها و بازها را بر مبناى علمى توصيف كرد، لوويس نام داشت. ب) يون H ${ }^{\text {ب }}$

 ج) در محلولهاى الكتروليت به دليل وجود اتمها و حركت آنها به سمت قطبهاى ناهمنام جريان الكتريكى برقرار مىشود.
(s)
(c) (c)
₹ چ) در شرايط يكسان دما و غلظت، رسانايى الكتريكى محلول HCl در آب، كمتر از HF در آب است. ح) همه اسيدها در آب به طور كامل يونيده مىشوند. خ) درجهٔ يونش براى اسيدهاى قوى بزرگتر از يك مى انـاشد. د) هر چه مولكولهاى اسيد در آب بيشتر يونش يابند، يونهاى هيدرورونيوم بيشترى توليد شده و قدرت اسيدى محلول بيشتر مى مشود. ذ) همهٔ مولكولهاى هيدرورن فلوئوريد و جزئى از مولكولهاى هيدرورن كلريد در آب يونيده مىشوند.

ر) غلظت همؤ گّونههاى موجود در محلول سركه، همانند ديگُر اسيدهاى ضعيف ثابت است. ز) كربوكسيليك اسيدها از جمله اسيدهاى ضعيف هستند كه همd هيدرورنههاى آنها مىتوانند بهصورت يون هيدرونيوم وارد محلول شوند. ز) اغلب اسيدها و بازهاى شناختهشده ضعيف هستند.

هر يكى از مفاهيه زير را تعريف كنيد. .FV
 を) اسيدهاى قوى

(1)

(Y)

جq.

(

ب) جه زمانى يك سامانه حالت خنثى دارد؟

آٓ) چه زمانى يكى محلول اسيدىتر مىباشد؟ پ) چه زمانى شير قابل نوشيدن نيست؟
 محلول آبى سديم كلريد كمتر است. اين محلول محتوى كدام مادهُ حلشونده مىتواند باشد؟ چرا؟

$\mathrm{CH}_{\mathrm{r}} \mathrm{OH}, \mathrm{KBr}, \mathrm{KOH}, \mathbf{H C O O H}, \mathrm{HCl}, \mathrm{NH}_{\boldsymbol{r}}$

r.
NaHCO_{r}
$\mathrm{Na}_{Y} \mathrm{CO}_{r}$ (ب
$\mathrm{HNO}_{\mathrm{r}}{ }^{(\overline{1}}$
$\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\Delta} \mathrm{COOH}$ (ث
HI (ت

هF . واكنش انواع باككنندههاى زير راب ا آب نوشته و اسيدى يا بازى بودن آنها را مشخص كنيد.
آٓ) صابون RCOONa

ب) باك باكنندة غيرصابونى RSO ب) سفيدكندة NaClO . ها دربارة درجة يونش به يرسشهاى دادمشده باسخ دهيد:

ب) درجه يونش با جه نمادى نشان داده مىیودو ت) منظور از درجه يونش هو و ا جه مىياشد؟

آ) رابطهُ درجه يونش را بنويسيد.
ب) منظور از درصد يونش جيست؟ ث) درجهٔ يونش اسيدهاى ضعيف كدام است؟ با توجه به اسيدهاى دادهشده به برسشها باسخ إي دهيد.
$\mathrm{HCl}, \mathrm{HCN}, \mathrm{H}_{\mathrm{r}} \mathrm{SO}_{\boldsymbol{f}}, \mathrm{H}_{\mathrm{r}} \mathrm{PO}_{\boldsymbol{F}}$

با توجه به شكل باسخ دهيد.
(1) غلظت يون هيدرونيوم در كدام لوله آزمايش بيشتر است؟ جرا؟؟ ب) درجه يونش كداميك بيشتر است؟ جرابٌ ب) غلظت يون نيترات در ظرف (1) جقدر است؟ حراء؟

آ) كداميك اسيد قوى است؟ جرا؟
ب) كداميك رسانايى بيشترى دارد؟ هرا؟
ب) قدرت اسيدى كداميی كهتر است؟ جرا؟
 محاسبه كنيد.

.\%. شكل مقابل مربوط به نمونهاى از محلول HF در دما و غلظت معين است. درجة يونش و درصد يونش محلول HF را حسابكنيد.

اكر در يك ليتر محلول //ه مولار اسيد ضعيف HA در دماى معين، هو/٪ مول اسيد بهصورت مولكولى وجود داشته باشد، درصد يونش اين اسيد را در اين دما حساب

$$
\begin{aligned}
& \text { ب) واكنش انجامشده را بنويسيد. } \\
& \text { ب) غلظت يون هيدرونيوم در كدام محلول بيشتر است؟ هرا؟ }
\end{aligned}
$$

(FA را به رنگ آبى درمى آورد. ب) محلول (1)، حون يونهاى بيشترى در محيط وجود درد دارد. ب) محلول (Ү)، خاصيت اسيدى كمى دارد چون در اين محلول غلظت يون

هيدرونيوم كم است.

رنی كاغذ pH در محلول	نوع اكسيد		فرمول شيميايى	نام تركيب شيميايى
	اسيدى	بازى		
قرمز	\checkmark		$\mathrm{N}_{\Gamma} \mathrm{O}_{\Delta}$	دىنيترورن بنتاكسيد
آبى		\checkmark	$\mathrm{K}_{\mathrm{r}} \mathrm{O}$	بتاسيهم اكسيد
قرمز	\checkmark		SO_{r}	$\begin{gathered} \text { ترىاكوكيد } \end{gathered}$
آبى		\checkmark	BaO	باريم اكسيد

 رسانايى كمى دارد و روشنايى لامب كم مىباشد.
(T) DI هر چه غلظـت يـون هيــرونيوم در محلـولى بيشتـر باشــد، آن محلول اسيلىتر مىباشد. ب) اكر در يك سامانه، غلظت يونهاى هيدرونيوم و هيدروكسيد با هم برابر باشد، آن سامانه حالت خنتى دارد. پ) هنكامى كه غلظت يون هيدرونيوم افزايش يابد، شير ترش شده و قابـل نوشيدن نيست.

NHr Δr يــك بـاز باشــد لــذا NHH يـا KOH می KO الكتريكى آن كمتر از NaCl است، پس بايد يونهاى كمترى در آب توليد كرده باشد، لذا $\mathrm{NH}^{\text {با مى باشد. }}$
$\mathrm{HNO}_{r}(\mathrm{aq})+\mathrm{H}_{Y} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{r} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{r}^{-}(\mathrm{aq}) \quad$ ($\quad \Delta r$
$\mathrm{Na}_{Y} \mathrm{CO}_{r}(\mathrm{aq})+\mathrm{H}_{Y} \mathrm{O}(\mathrm{l})$
$\rightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{HCO}_{\mathrm{Y}}^{-}(\mathrm{aq})$
$\mathrm{NaHCO}_{r}(\mathrm{aq})+\mathrm{H}_{Y} \mathrm{O}(\mathrm{l})$
$\rightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{H}_{\mathrm{r}} \mathrm{CO}_{\mathrm{r}}(\mathrm{aq})$
$\mathrm{HI}(\mathrm{aq})+\mathrm{H}_{Y} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{r} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})$
$\mathrm{C}_{\curlyvee} \mathrm{H}_{\Delta} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{\Upsilon} \mathrm{O}_{(\mathrm{l})}$
$\rightarrow \mathrm{H}_{\mathrm{r}} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\Delta} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}$
كزينههاى (آ)، (ت) و (ث) اسيد هستند، جون در آب، يون هيـدرونيوم آزاد
 افزايش پيداكرده است.

پ) نيست
ج) نافلز - اسيدى
خ خ يونش
$\mathrm{H}_{Y} \mathrm{SO}_{\uparrow}-\mathrm{HCl}$ 3) قوى ــ كامل ـ يكـ

د) ضعيف ز) ضعيف

P9 ب) نادرست. نخستين كسى كه اسيدها و بازها را بر مبنــاى علمـى توصـيف كرد سوانت آرنيوس نام داشت.

كه به يون هيدرونيوم معروف است.
 آب سبب افزايش غلظت يون هيدروكسيد مىشود.

ث) درست
ج) نادرست. در محلولهاى الكتروليت به دليل وجود يونها و حركت آنهــا
به سمت قطبهاى ناهمنام، جريان الكتريكى برقرار مى شوود.
 محلول HCl در آب بيشتر از HF در آب است.
ح) نادرست. اسيدهاى ضعيف در آب به طور جزنى يونيّ يرنيه مىشوند. خ) نادرست. درجه يونش براى اسيدهاى قوى برابر با يك مى ياشد.

د) درست 3) نادرست. جزنُى از مولكولهاى هيدرورن فلوئوريــد و همــه مولكولهـاى هيدرورن كلريد در آب يونيده مىشوند.

ر) درست
ز) نادرست. كربوكسيليك اسيدها از جمله اسيدهاى ضعيف هستند كه تنهـا
 محلول شود.

ز) درست
T PV آ اسيد آرنيوس: مادماى است كه با حل شدن در آب، غلظت يـون هيدرونيوم را افزايش میىدهد. ب) باز آرنيـوس: مــادماى اسـت كـه بـا حـل شــن در آب، غلظت يـون هيدروكيديد را افزايش مىدهد. ب) اكسيد اسيدى: به اكسيد نافلزهاى محلول در آب كه ضمن حل شدن،

يون هيدرونيوم توليد مىكنند اكسيد اسيدى كفته میشيرد ت) اسيد تكـيروتوندار: به اسيدى كه هر مولكول آن در آب تنـها مىتواند

يك يون هيدرونيوم توليد كند كفته مى شود.

 مولكولهاى حلشده، درجه يونش كفته مى ششود. を) اسيدهاى قوى: بها اسيدهايى كه بر اثر حل شدن در در آب تقريباً به طـور كامل يونش مىيابند اسيدهاى قوى گفته مىشور.

$\alpha=\frac{1}{9}=0 / 199$
$\% \alpha=0 / 199 \times 100=\% / 919$

$\Rightarrow \mathrm{n}=\mathrm{ol}$
تعداد كل مولهاى حلشده
تعداد كل مولهاى حل شده = تعداد مولهاى يونيدهشده
-
$\alpha=\frac{0 / 00 \mathrm{Y}}{0 / 1}=\% / 0 Y$
$\% \alpha=\alpha \times 100=010 \gamma \times 100=\%$
$\mathrm{HCN}(\mathrm{aq}) \xrightarrow{\mathrm{H}_{\mathrm{r}} \mathrm{O}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$

توليد ז

 مىدهد كه اسيد قوىترى بوده و واكنشيذيرى بيشترى دارد. $\mathrm{HCl}+\mathrm{Zn} \rightarrow \mathrm{ZnCl}_{\Gamma}+\mathrm{H}_{Y}$ ب) محلول (1)، جون اسيد قوىترى است.
$\% \alpha=\frac{\left[\mathrm{H}_{r} \mathrm{O}^{+}\right]}{[\mathrm{HCN}]} \times 100 \Rightarrow 1 \Delta=\frac{\left[\mathrm{H}_{\mu} \mathrm{O}^{+}\right]}{0 / 01} \times 100$
$\left[\mathrm{H}_{r} \mathrm{O}^{+}\right]=0 / 001 \Delta \mathrm{~mol} \mathrm{~L}^{-1}$

$\Rightarrow \% \% f=\frac{\text { غلظت استيك اسيد يونيدهشده }}{\text { غ mol.L }}$
\Rightarrow غلظت استيك اسيد يونيدهشده $=0 / 0 \mathrm{f} \times 0 / \mathrm{Y}=0 / 00 \mathrm{~A} \mathrm{~mol}_{\mathrm{M}}^{\mathrm{m}} \mathrm{L} \mathrm{L}^{-1}$
يونيدنشت استيك اسيد + + غلظت استيدهشده استيك اسيد = غلظت كل استيك اسيد
\Rightarrow = غلظت استيك اسيد يونيدنشنده - $=0 / 00 \wedge=0 / / 9 r m o l . L^{-1}$
 $\mathrm{RSO}_{\Upsilon} \mathrm{Na}+\mathrm{H}_{\Upsilon} \mathrm{O} \rightarrow \mathrm{RSO}_{\curlyvee} \mathrm{H}+\mathrm{Na}^{+}+\underline{\mathrm{OH}^{-}}$محلول بازى $\mathrm{NaClO}+\mathrm{H}_{\curlyvee} \mathrm{O} \rightarrow \mathrm{HClO}+\mathrm{Na}^{+}+\underline{\mathrm{OH}^{-}} \quad$ (u) محلول بازی هر سه ماده در آب، يون هيدروكسيد آزاد مىكنند لذا بازى هستند.
شماركل مولكولههاى حلى حليدهدهده =

ب) اكر درجه يونش در عدد 100 ا ضرب شود، درصد يونش بهدست مىآيد. = $\alpha \times 100$

 مولكولهاى حلشده، يونيده شدهاند. ث) (آنها كمتر از يك مىباشد.

هيدرونيوم توليد مىكتند. $\mathrm{HCl}(\mathrm{aq}) \xrightarrow{\mathrm{H}_{\gamma} \mathrm{O}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad$ ب
$\mathrm{HCN}(\mathrm{aq}) \xrightarrow{\mathrm{H}_{\mathrm{Y}} \mathrm{O}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$

غلظت يون هيدرونيوم در لوله (1) بيشتر مىباشد.
ب)
 يون هيدرونيوم و يون نيترات توليد مىكند. $\mathrm{HNO}_{r}(\mathrm{aq}) \xrightarrow{\mathrm{H}_{r} \mathrm{O}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{r}^{-}$
 يونيده شده پس اسيد قوى است. ب) D ، جون به طـور كامـل يونيـده شـده و در شـرايط يكسـان يونهـاى بيشترى دارد.

$$
\begin{aligned}
& \text { تعداد مولكولهاى _ تعداد كل مولكولهاى = تعداد مولكولهاى } \\
& \text { يونيدهنشده حلشدهده }
\end{aligned}
$$

caotims

..................
 واكنشهاى شيميايى به دو دستهٔ واكنشهاى بركشتايذير (يى طرفه) و برثشتيذير (دو طرفه) دستهبندى مىشوند. واك

واكنشهايى هستند كه تنها در جهت رفت (تبديل واكنشدهندهما به فراوردهما) انجام مىيوند و در جهت برگشـت انجـام نمى شـوند، مانــد سـوختن

$$
\mathrm{CH}_{\mathrm{F}}(\mathrm{~g})+\mathrm{rO}_{\mathrm{r}}(\mathrm{~g}) \rightarrow \mathrm{CO}_{\mathrm{r}}(\mathrm{~g})+\mathrm{rH}_{\mathrm{r}} \mathrm{O}(\mathrm{~g})
$$

هيدروكربنها و بختن غذال.

ا- به واكنشهاى بركشتنآيذير، واكنشهاى كامل نيز كفته مىشود جون تا مصرف كامل حداقل يكى از واكنشدهندهما بيش محرود. Y- در واكنشهاى بركشتنايذير نماد \rightarrow به كار میروود.
واكنشهاى بركشتیییير

واكنشهايى هستند كه هم در جهت رفت و هم در جهت بركشت انجام میشوند. در اين واكنشها همه واكنشدهندهما به فراور دمها تبـديل نمىشـوند،

$\mathrm{rO}_{\mathrm{r}}(\mathrm{g}) \rightleftharpoons \mathrm{rO}_{\mathrm{r}}(\mathrm{g})$

$$
\begin{aligned}
& \text { ا- در واكنشهاى بركشتيذير نماد }
\end{aligned}
$$

> واكنش توليدگوكرد ترىاكسيد از توكرد دىاكسيد يك واكنش بركشتبذير بوده و بهصورت زير مىباشد.
> $\mathrm{rSO}_{\mathrm{r}}(\mathrm{g})+\mathrm{O}_{\mathrm{r}}(\mathrm{g}) \rightleftharpoons \mathrm{rSO}_{\mathrm{r}}(\mathrm{g})$
> آ) اتر درون ظرف دربسته فقط كازهاى

اكر در يك واكنش بركشتذِير، در شرايط مناسب سرعت واكنشهاى رفت و بركشت برابر شود، به آن، واكنش تعادلى كفته مىشود. $\mathrm{A}+\mathrm{B} \underset{\mathrm{R}_{\mathrm{r}}}{\stackrel{\mathrm{R}_{1}}{\rightleftharpoons}} \mathrm{C}+\mathrm{D} \quad \mathrm{R}_{1}=\mathrm{R}_{\mathrm{r}}$
واكنشهاى رفت و بركشت در سامانههاى تعادلى به طور بيوسته و با سرعت برابر انجام مىیوند و به همين دليل مقــدار مـواد شـركتكتننده در سـامانه

ا- يكى از شرطهاى برقرارى تعادل اين است كه واكنش در ظرف در در بسته انجام شود.

r-F-

ثابت تعادل (K)

<쁭
براى يك واكنش تعادلى در دماى معين، نسبت حاصلضرب غلظت فراورد دهما به توان ضريب استوكيومترى آنها، به حاصلضرب غلظت واكنشدهنـدهمها به توان ضريب استوكيومترى آنها همواره مقدار ثابتى است. اين مقدار ثابت را ثابت تعادل (K) ميكويند.

$$
\text { aA }+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD} \quad \mathrm{~K}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{[B}[]^{b}} \quad \text { تعادل فرضى مقابل، عبارت ثابت تعادل بهصورت زير نوشته میشود: }
$$ ا- مقدار ثابت تعادل (K) تنها تابع دما است و در دماى ثابت، مقدارى ثابت است.

F F- غلظت مواد جامد (s) و مايع (l) ثابت است، لذا در عبارت ثابت تعادل، از نوشتن غلظت مواد جامع و مايع خالص صرفنظر مىكنيه.

 يعنى mol.LL , انوشته، سيس يكاما را ساده كرده تا يكاى K بهدست آيد.

	يكاى ثابت تعادل واكنشهاى تعادلى زير را بهدست آوريد. $\mathrm{rSO}_{\mathrm{r}}(\mathrm{~g})+\mathrm{O}_{\mathrm{r}}(\mathrm{~g}) \rightleftharpoons \mathrm{rSO}_{\mathrm{r}}(\mathrm{~g})(\overline{\mathrm{T}}$
[HF] ${ }^{r}{ }^{\text {r }}$	

K باكمك رابطه زير میتوانيم يكاى ثابت تعادل را به راحتى بهدست آوريمه

$$
\mathrm{K}=\frac{\left[\mathrm{SO}_{\mathrm{r}}\right]^{r}}{\left[\mathrm{SO}_{\mathrm{r}}\right]^{\top}\left[\mathrm{O}_{\mathrm{r}}\right]} \quad \mathrm{K} \text { يكاى }=\left(\text { mol. } \mathrm{L}^{-1}\right)^{r-r}=\left(\mathrm{mol} \cdot \mathrm{~L}^{-1}\right)^{-1}=\mathrm{mol}^{-1} \cdot \mathrm{~L}
$$

به عنوان نمونه، براى تعيين يكاى واكنش تعادلى
 ب) واكنشهاى برگشت (يذير - نايذير) را با نماد \rightarrow بر نشان مىدهند. ب) در واكنشهاى برگشتیذير، سرعت واكنشهاى رفت و بركشت يكسان (است ـ نيست) و به مقدار واكنشدهندهها، فراوردهها و نوع واكنش بستگى دارد. ت) اكر در واكنش توليد كاز گوكرد ترىاكسيد از گاز كوكرد دىاكسيد و اكسيرن در ابتدا فقط كاز بـ SO وجود داشته باشد، واكنش (رفت ـ بركشت)

با سرعت زيادى انجام مى شود.
ث) يكى از شرطهاى برقرارى تعادل، انجام واكنش در ظرف (باز - بسته) مى انـاشد. ج) در لحظة تعادل، سرعت واكنشهاى رياى رفت و برگشت(يكسان ـ متفاوت) بوده و غلظت مواد شركتكننده در تعادل (يكسان ـ ثابت) است. を ح) در رابطة ثابت تعادل، غلظت مواد (كازى ـ جامد) و (مايع ـ محلول) نوشته مى شود.

$$
\begin{aligned}
& \text { درستى يا نادرستى عبارتهاى زير را مشخص كنيد. شكل درست يا دليل نادرستى عبارتهاى نادرست را بنويسيد. }
\end{aligned}
$$

ب) بيشتر واكنشهاى شيميايى بركشتيذير هستنـدي
ج) هنگامى مىتوان از عبارت ثابت تعادل استفاده نمود كه واكنش بركشتيذير بـي به تعادل رسيده باشد.

$$
\begin{aligned}
& \text { فرايندهاى بركشتيذير را در موارد زير مشخص كنيد. } \\
& \text {. } 91 \\
& \text { ب) حل شدن مقدار زيادى }{ }_{\text {ب }}^{\text {ب }} \text { در آب } \\
& \text { ت) هختن غذا } \\
& \text { آٓ) سوختن كاز متان } \\
& \text { ب) تبديل اكسيرّن به اوزون در استراتوسفر }
\end{aligned}
$$

q9. يكى ظرف بلمبشده كه شامل كاز

ب) اتر همين ظرف را درون فريزر قرار دهيم جه اتفاقى مى افتد؟
ت) واكنشهاى انجامشده را بنويسيد.

 كردن در دو لولهُ آزمايش قرار مىدهيم. يكى لوله را از هوا تخليه كرده و در آن را مى آبنديم. با با
 آ) معادله فرايند انجامشده را بنويسيد. ب) آيا واكنش آبكيرى از CoCl
.VY. شكلهای زير تبخير آب در ظرف سربسته را نشان میدهد. با توجه به آن به هرسشهاى داده شده هاسخ دهيد:

(1)

(\uparrow)

($\left.{ }^{(}\right)$
آ) در كدام شكل (ها) سرعت تبخير بيشتر از سرعت ميعان است؟

پ) آيا براى برابر شدن سرعت تبخير و ميعان، وجود دريوش شيشهاى لازم است؟ ت) واكنش تعادلى ايجادشده را بنويسيد.
.VF . به هرسشهاى زير پاسخ دهيد:
 ״) در لحظه تعادل، سرعت و غلظت مواد شركتكننده در واكنش چگگونه است؟

عبارت ثابت تعادل را براى هر يك از واكنشهاى زير بنويسيد. در ضمن با توجه به ثابت تعادل واكنش(آ)، ثابت تعادل دو واكنش ديگر را .VF (ماهماهك كشوها (ی)

$$
\begin{aligned}
& \text { حساب كنيد. (دما در واكنشها را يكسان است.) } \\
& \mathrm{N}_{\mathrm{r}} \mathrm{O}_{\mathrm{F}}(\mathrm{~g}) \rightleftharpoons \mathrm{rNO}_{\mathrm{r}}(\mathrm{~g}) ; \quad \mathrm{K}=0 / \mathrm{r} \mathrm{~A}_{(\mathrm{T}} \\
& \mathrm{HNO}_{Y}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{\mathrm{r}} \mathrm{O}_{\mathrm{F}}(\mathrm{~g}) ; \quad \mathrm{K}^{\prime}=\text { ? (ب) } \\
& \mathrm{rN}_{\mathrm{Y}} \mathrm{O}_{\mathrm{f}}(\mathrm{~g}) \rightleftharpoons \mathrm{FNO}_{\mathrm{r}} ; \mathrm{K}^{\prime \prime}=\text { ? (e }
\end{aligned}
$$

(0)

1) $\mathrm{H}_{Y} \mathrm{~S}(\mathrm{aq})+\mathrm{H}_{Y} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{r} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{HS}^{-}(\mathrm{aq}) \quad ; \quad \mathrm{K}_{1}=1 \times 10^{-r}$
r) $\mathrm{HS}^{-}(\mathrm{aq})+\mathrm{H}_{Y} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{\mathrm{r}} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{S}^{r-}(\mathrm{aq}) ; \quad \mathrm{K}_{\mathrm{r}}=\ldots$
$r) \mathrm{H}_{Y} \mathrm{~S}(\mathrm{aq})+\mathrm{r}_{Y} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{rH}_{r} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{S}^{r-}(\mathrm{aq}) ; \mathrm{K}_{r}=1 / r \times 10^{-1 r}$
ب) مقدار عددى K K K را محاسبه كنيد.

. براى سامان8 تعادلى دادهشده عبارت ثابت تعادل را نوشته و يكاى آن را بهدست آوريد.
$\mathrm{CoCl}_{\uparrow}^{\Gamma-}(\mathrm{aq})+\varsigma \mathrm{H}_{\varphi} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{Co}\left(\mathrm{H}_{\varphi} \mathrm{O}\right)_{\varphi}^{\Gamma+}(\mathrm{aq})+\mathrm{FCl}^{-}(\mathrm{aq})$
(c)

در عبارت ثابت تعادل كدام يك از واكنشهاى زير
.VY

1) $\mathrm{FCO}(\mathrm{g}) \rightleftharpoons \mathrm{rC}(\mathrm{s})+\mathrm{rCO}_{\mathrm{r}}(\mathrm{g})$
r) $\mathrm{CaCO}_{r}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{r}(\mathrm{~g})$
r) $\mathrm{C}(\mathrm{s})+\mathrm{rN}_{r} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{rN}_{r}(\mathrm{~g})+\mathrm{CO}_{r}(\mathrm{~g})$

آ) غلظت تعادلى CO
ب) غلظت تعادلى CO به به توان بيش از يك می میرسد؟
f) $\mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{\mathrm{r}}(\mathrm{g}) \rightleftharpoons \mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g})$

ب) فقط غلظت تعادلى COr
 آ) معادلة واكنش تعادلى را بنويسيد. ب) يكاى ثابت تعادل را تعيين كنيد.
.V9. در صنعت، از گرما دادن به كلسيم كربنات جامد در كورهاى با دماى حدود ArYº كلسيهاكسيد جامد را بهدست می آورند. $\mathrm{CaCO}_{r}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{\gamma}(\mathrm{g}) ; \quad \mathrm{K}=10^{-r} \mathrm{~mol}^{-1}$

 میى شود.
 تبديل مىشود.
 به

ب) نايذير	(T) 99
ت) بركشت	ب) نيست
ج) يكسان - ثابت	ث) بسته
ح)	¢ (¢) نيست

(T) SV نادرست. به واكنشهاى بركشتنإيذير، واكنشهاى كامل نيـز گفتـه میشیود. پ) نادرست. در همهُ واكنشهاى بركشتیذير، واكنشدهندهـها به فراوردهها

تبديل شده و فراور درها با به واكنشدهندهمها تبديل مىشوند.
 سرعت واكنشهاى رفت و برگشت مىباشد.

ث) درست
ج) درست
چ) نادرست. در رابطة ثابت تعادل فقط غلظت مـواد كازى و معحلول نوشــته مىشود و از نوشتن غلظت مواد جامد و مايع خالص صرفنظر مىكنيم.

